
Technology Development for Coronagraphic Imaging

Nick Siegler
NASA Exoplanet Exploration Program
Technology Manager

01/07/14
EXEP Program News
American Astronomical Society
2014 Winter Meeting (Washington DC)

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

Block Diagram of a Typical Lyot Coronagraph

Coronagraph Mask Fabrication

Exoplanet Exploration Program

ID	Title	Description	Current Capability	Required Capability
CG-1	Architecture	Mask design and optical layout are needed that meet AFTA requirements	Three coronagraph technologies have obtained ≤ 10-8 raw contrast at 10% BW centered on 700 nm with an unobscured pupil.	One or more coronagraph technologies with ≤ 10-8 raw contrast at 10% BW filters from 430-980 nm with an obscured pupil

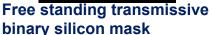
Possible Path to Closing Technology Gap

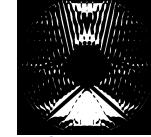
Selection process underway from six AFTA candidate coronagraph architectures to two.

- Primary and backup
- Fabricate sets of each mask
- Demonstrate performance in the two HCITs
 - Mask/apodizer iterations likely

Radiation testing (if necessary)

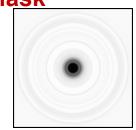
- Some of the masks may have dielectrics or liquid crystal polymers
- Down-selection to one architecture


Before


(unobscured pupil)

AFTA (obscured pupil)

Shaped Pupil Mask



Black Si substrate with reflective patterned Al coating

Hybrid Lyot Mask

Linear mask with profiled Ni layer (amplitude) coated with profiled crvolite (phase)

Circular mask with profiled Ni layer (amplitude) coated with profiled MgF2 (phase)

Low-Order Wavefront Sensing and Control (LOWFS/C)

Exoplanet	Exploration	Program

ID	Title	Description	Current Capability	Required Capability	
CG-2	Low-Order Wavefront Sensing & Control	Pointing stability and thermal drift	≤ 10 ⁻⁹ raw contrast has only been achieved in a well-controlled <u>stable</u> lab environment and <u>unobscured</u> <u>pupil.</u>	Sufficient sensing and control of fast line-of-sight jitter and slow thermally-induced WFE to maintain closed-loop ≤ 10 ⁻⁸ raw contrast with an AFTA <u>obscured pupil</u> and simulated <u>dynamic flight environment</u> . Residual pointing stability expected to be ~0.4 mas for an expected AFTA on-orbit env't.	

Possible Path to Closing Technology Gap

- 1. Upon AFTA coronagraph selection and receiving telescope jitter and WF drift inputs, baseline LOWFS/C rqmts for each coronagraph.
- Downselect from multiple LOWFS/C techniques.
- Develop LOWFS/C algorithms using modeling.
- Build and demonstrate LOWFS/C closed-loop performance in an independent vacuum testbed.
- 5. Deliver and integrate to coronagraph testbed (HCIT)

Knife Edged Mask

Use image morphology from a slightly defocused PSF to sense WF

Detector near image plane Can sense tilt

Zernike WFS

Point diffraction interf. Sense WF by interfering the WF with a reference WF created by a spatial filter Detector at pupil plane

sense tilt

Phase Retrieval

Use FT and slightly defocused Use SH subaperture image image to sense the WF Detector near image plane Can sense tilt

Shack-Hartmann

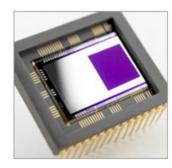
centroid to measure local Y

- Detector at pupil plane
- Can sense tilt

Fast WF Jitter

PSF centroid or quad cell / pyramid APD for line of sigh at high rate WF tilt only

IFS Ultra-Low Noise Detector



Exoplanet Exploration Program

ID	Title Description		Current Capability	Required Capability	
CG-9	Ultra-Low Noise Visible Detector	Low-noise detector needed to characterize exoplanet spectra	Si detector cooled to 150K can achieve dark current < 0.0001 e/pix/s. 1kx1k EM CCDs provide < 0.1 e/pix RN with standard electronics in a non-radiation	Dark current < 0.0001 e/pix/s and read noise < 0.1 e/pix built with flight electronics in GEO radiation flight environment. 2kx2k format (TBD)	

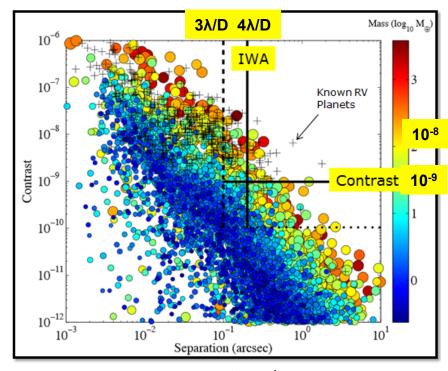
Possible Path to Closing Technology Gap

- 1. Understand science operational scenarios and camera modes; derive preliminary detector requirements.
 - < 0.1 e/pix read noise
 - ~0.0001 e/pix/s dark current
 - QE > 80% in the visible
- 2. Survey existing detector and read-out electronics technologies
- 3. Select and acquire a baseline detector; characterize under realistic operational scenarios
 - Includes low-noise electronics
- 4. Perform radiation testing of the selected detector; before and after characterization.
- 5. Investigate flight read-out electronics design.
- 6. Design, build, and test flight-like electronics boards.

e2V Electron Multiplying CCD (a candidate device)

ESA successfully demonstrated gain stability and radiation tolerance for EMCCDs.

Post-Data Processing



Exoplanet Exploration Program

ID	Title	Description	Current Capability	Required Capability
CG-4	Data Architecture Post- Processing	Software algorithms are needed to improve detectability of planets in data dominated by speckle noise	Few 100x speckle suppression has been achieved by HST and by ground-based AO telescopes in the NIR and in contrast regimes of 1e-4 to 1e-7, dominated by phase errors only.	A 10-fold contrast improvement in the visible from 1e-8, where amplitude errors are expected to be important.

Possible Path to Closing Technology Gap

- 1. Assess the performance of current state-of-the-art post-processing algorithms using existing HCIT data and simulated multiwavelength IFS data
 - a) evaluate the regime where contrast in no longer dominated by phase errors.
- 2. Understand telescope/instrument temporal behavior and assess possible operational scenarios and observation strategies.
- 3. Develop simulations of realistic AFTA coronagraphic PSFs including thermal modeling, LOWFS, temporal variations.
- 4. Develop simulated PSF library from actual HCIT data with AFTA pupil.
- 5. Demonstrate algorithm by retrieving simulated planet through PSF subtraction.

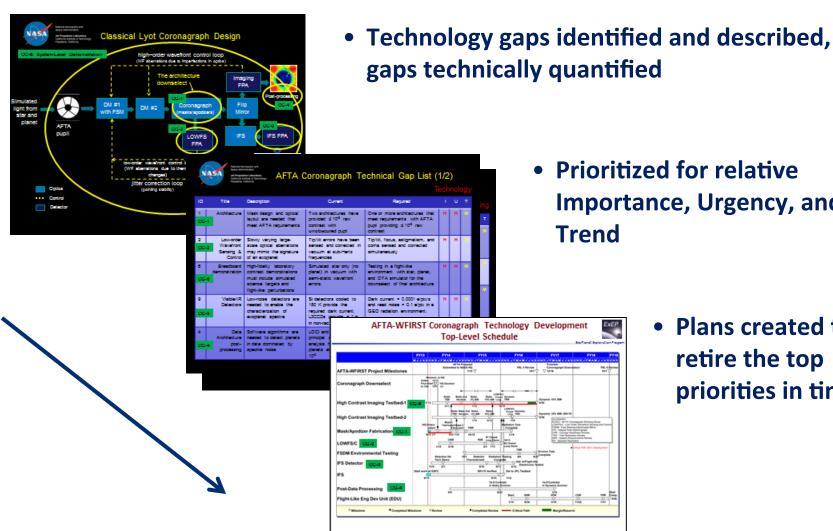
Contrast Ratio vs Planet/Star Separation AFTA-WFIRST Study Report (2013)

Optical modeling validation

System-Level Testbed Demonstration with Dynamic Wavefront

Exoplanet Exploration Program

ID	Title	Description	Current Capability	Required Capability
CG-6	Breadboard Demo	High-fidelity laboratory contrast demonstrations	Testing with a simulated star in vacuum with semi-static wavefront errors and unobscured pupil at 10% BW at 700 nm.	Testing with a simulated star and telescope simulator in vacuum with dynamic wavefront errors and obscured pupil at 10% BW at 430-980 nm.



ExEP Technology Development Process

Exoplanet Exploration Program

 Prioritized for relative Importance, Urgency, and

> Plans created to retire the top priorities in time

Coronagraph technology plans for AFTA far along; starshade next.

Modeling

mechanical and optical

scale flight occulter will

models that the full-

achieve its baseline

performance.

budgets reliably predict

contrast degradations in

simulations. Models have

not been fully validated

experimentally.

Starshade Technology Development Areas

						Exoplanet Exploration Program	
ID	Title	Description	Current	Required	Funding Sources		
S-1	Control of Scattered Sunlight	Sunlight scattered from starshade edges and surfaces risks being the dominant source of measurement noise.	Several preliminary designs of edge shapes have been studied through laboratory tests and optical modeling and have been reported in the literature.	Scattered sunlight must be suppressed to less than the expected brightness of exozodiacal dust.	ExEP TDEM 12 ←	Suzanne Casement/NGAS Starshade Straylight Mitigation through Edge Scatter Modeling	
S-2	Starshade Deployment	Demonstrate that an starshade can be deployed to within the budgeted tolerances.	Millimeter-wave mesh antennas have been deployed in space with diameters up to 17m × 19m and a surface accuracy of 2.4-mm.	Demonstrate the budgeted in-plane deployment tolerances, which are millimeter to sub- millimeter depending on the specific error terms.	TDEM 10	and Sharp-Edge Materials Development	
S-3	Validation of starshade optical models	Experimentally validate the equations that predict the contrasts achievable with a starshade	Experiments have validated optical diffraction models to contrasts of 4×10^{-10} , but yet with poor agreement near petal valleys and tips.	Experimentally validate models of diffracted intensity to $\sim 1 \times 10^{-11}$, and perturbation intensities to 20%.	ExEP TDEM 12 ←	Demonstration of Starshade Starlight-Suppression	
S-4	Thermal & Mechanical Dynamic Stability	The deployed tolerances must be maintained under typical observing conditions, including starshade rotation.	Existing designs and petal prototypes do not yet have the fidelity to predict on-orbit performance.	The mechanical and thermal properties of a deployed starshade must meet the budgeted tolerances under the anticipated observing conditions.	STDT ExEP	Performance in the Field	
S-5	Formation Flying GN&C	Demonstrate that the GN&C system for an occulter will enable the required slew from star to star and positional stability for science observations.	Simulations have demonstrated that GN&C is tractable, though no flight demonstrations have yet been conducted.	Sensors and algorithms are required to move from star to star. The hand-off to science mode and the required tracking capability must be demonstrated.			
S-6	Flight Performance System	Demonstrate using experimental data and validated thermo-	Tolerancing of error budget terms is well understood. Error	Demonstrate using scaling laws, subcomponent models, combined with		Note: one <u>TDEM 09</u> mitigated risk of petal fabrication	

appropriate telescope models that a full-sized

flight occulter will achieve

a baseline contrast of 1 ×

10⁻¹⁰ over the required

petal fabrication.